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Introduction 
 With new more aggressive coarsening algorithms that while reducing memory 

also degrade convergence often dramatically, it was imperative that new interpolation 

routines be implemented to recover this degradation. The implementation details and 

results for three new interpolation routines, standard, extended, and F-F, are presented in 

this paper. The project was focused on parallel implementation, so there is little 

theoretical analysis. The references contain much of the algorithmic design issues and 

analysis, if further understanding or exploration is needed, see [1][2][3]. It will be shown 

throughout this paper that long-range interpolation is needed for a number of problems, 

for some cases, there is almost a reduction in iterations by 2 orders of magnitude.     

 

Background 
 Three new interpolation routines were implemented into BoomerAMG, all of 

which are based on long-range interpolation. Throughout this paper, represents a fine 

point,  represents a coarse point,  represents the interpolatory set of point i ,  

represents the neighborhood of point i , and it will be assumed that . The standard 

interpolation routine will be discussed first, followed by extended, and finally F-F. For all 

of the schemes, there are some underlying assumptions; given a C/F-splitting and sets 

 of interpolatory points, the goal is to define the interpolation weights  
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Because long range interpolation is used, for all of the new interpolation routines, 

the interpolatory set of a fine point i consists of strong coarse neighbor points as well as 

strong C-point connections of j , where = {strong F neighbors of i }. Using this 

possibly bigger interpolatory set, the standard method is an extension of direct 

interpolation. For this method interpolation weights are generated by substituting the 

error  in (2) for all  using the j-th row of the matrix and applying direct 

interpolation to the obtained new equation. There are two ways to calculate the weights 

for standard interpolation. The negative and positive coefficients can either be calculated 

separately or together. It will be seen later, that this can have a large influence on the 

convergence. The extended method determines the weights analogously with classical 

interpolation using the extended interpolatory set, i.e. strong F connections are collapsed 

to the C points. With the extended interpolatory set, the points  are collapsed to 

the diagonal as well. Finally, F-F interpolation is just a modification to extended 

interpolation. The main difference is that the points  are not collapsed to the 

diagonal, and the interpolatory set is only extended if  has no common strong 

coarse neighbor with . 
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Implementation 
The ParCSR format is used to store the BoomerAMG matrices, with rows 

partitioned between the processors. The unknowns corresponding to the diagonal entry of 

these rows will be considered local to the processor. Each ParCSR matrix consists of two 

matrices, one containing the local unknowns and one containing the rest of the unknowns 

(or off- processor column non-zeros). More detailed discussions concerning the design 

and data structures of BoomerAMG can be found in [4]. With this information accessible, 

it is easy to get information for the neighbors of the unknown. However, with long-range 

interpolation, neighbors of neighbor’s can possibly be used as interpolatory points and 

can affect interpolation weights. Thus, before determining the interpolation points and 

weights, the neighbors of neighbors information needs to be determined and made 

accessible. First, the full row information for the off-processor unknowns is gathered. 

New off processor points (neighbors of neighbors not previously seen) can then be 



determined and off-processor arrays can be formed (C/F-splitting, fine-to-coarse 

mappings, column mapping for off-processor matrices, etc. [4]) Because of the 

monotonicity required in some of these arrays, care needs to be taken to correctly store 

the new off-processor points. Also, since new points could force communication with 

new processors, communication patterns need to be adjusted. With all the needed 

information at hand, the interpolation matrix can be formed. This is implemented with 

two main loops, both looping over the local fine points. The first loop is used to 

determine the size of the interpolation matrix, the second determines the weights and the 

column locations for the local interpolation matrix. After the 2nd loop, the communication 

pattern for the interpolation matrix is determined and the column locations for the off-

processor interpolation matrix are found and stored.     

 

Results 
 The new interpolation routines are effective for situations in which coarsening 

leads to strong - connections with no common C-point. For all of the tests presented 

below, PMIS coarsening will be used [5]. Also, there are tools and schemes that could be 

used to control complexity or accelerate convergence, however, for these tests, no special 

treatment will be given so that each scheme can be studied as a standalone method. The 

3-dimensional problems were conducted with processor counts equal to 1, 8, 64, and 512. 

The problem size was kept approximately at 40 X 40 X 40 unknowns on each processor. 

In other words, as the problem size doubles in each direction, the number of processors 

used grows by a factor of 8. For the 2-dimensional case, the problem size for each 

processor will be approximately 512 X 512 unknowns and processor counts will be equal 

to 1, 4, 16, 64, and 256. The PDEs will be discretized using finite difference methods. For 

these test cases, if the residual has not been reduced below the tolerance after 1000 

iterations, it is considered not converging.  

F F

 The 3d Poisson problem, with constant righthand side will be explored first. 

Classical and multipass are two interpolation routines that are already implemented, and 

they will be used for comparisons. 

 



Laplacian (# of rows ~40X40X40 per processor)
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Figure 1: Time to needed to reduce the relative residual below 10-7. 
 

For small test cases, it appears that the original methods are satisfactory, but as the 

problem size increases, it starts to become more important to use the long-range 

interpolation routines. The long-range methods consistently need more time for setup, but 

less iterations. The results for the new routines could be improved greatly if the 

interpolation matrix was truncated. However, this test case still serves as a good base test. 

 A PDE with jumps will be used as the 2nd test. This is a good problem, because 

PMIS coarsening could be used as a viable option for coarsening. It then becomes 

imperative to use long-range interpolation. The “classical” method does not even 

converge for the smallest problem so it is purged from the plot below. Also, the standard 

routine is not scaling at all, and needs 297 iterations to converge for the 64 processor 

case. This is not very good when compared to extended and F-F, which converged in 11 

and 15 iterations respectively. For this problem it would be best to use extended or F-F, 

with F-F consistently using less time. The multipass routine is working for small 

problems but is beginning to struggle as the problem size increases.  

 

 



PDE w/Jumps (# of rows ~40X40X40 per processor)
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Figure 2: Time to needed to reduce the relative residual below 10-7. 

 

It can be seen below, that the setup times for multipass are very small and scaling very 

well, however, the iterations to converge are not scaling as well, causing the setup plus 

solve times to become greater than extended and F-F. It requires 14 and 17 iterations to 

converge for extended and F-F respectively, and 200 iterations for multipass. 

 



PDE w/Jumps (# of rows ~40X40X40 per processor)
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 Figure 3: BoomerAMG setup times. 
 

The final 3d case is a problem with anisotropy in the y-direction. This also shows 

the importance of the long range interpolation schemes. 

 



Anisotropic (# of rows ~40X40X40 per processor)
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 Figure 4: Time to needed to reduce the relative residual below 10-7. 
 

The classical and multipass schemes are starting to blow up as the problem size starts to 

get big. It takes approximately 135 iterations for the old routines to converge, compared 

with 15 for the long-range interpolations. All of the three new methods look to be similar 

for this problem. The standard and extended schemes need less iteration than F-F, but the 

F-F routine consistently has lower setup times by enough to be slightly quicker in the 

timings provided above. 

The first 2d test is a 45º rotated PDE with anisotropy. As was observed in the last 

two 3d tests, it is necessary to use long-range interpolation.  

 



Rotated 45 degrees, anisotropic (eps = .001)
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Figure 5: Time to needed to reduce the relative residual below 10-7. 

 

The original implementation of the standard interpolation routine failed to converge as 

the problem size grew. This is an example of a case where no separation between 

negative and positive connections in the weighting formula improves convergence 

dramatically. 

 

Rotated 45 degrees, anisotropic (eps = .001)
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Figure 6: Time to needed to reduce the relative residual below 10-7. 

 



 

For this problem, the extended routine is the fastest and uses the least number of 

iterations, but all three of the above algorithms would be viable. 

The final 2d test is a 60º rotated PDE with anisotropy. For this case, the only two 

methods that worked, were extended and F-F. The extended routine uses considerably 

less iterations to converge than F-F (15 versus 46 for 256 processors), which is why the 

time for setup plus solve is much better for extended. 
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Figure 7: Time to needed to reduce the relative residual below 10-7. 

 

 

Conclusion 
 Long range interpolation was shown to be necessary for acceptable convergence 

in the above problems, outside of the Laplacian. Out of the long range schemes, extended 

and F-F were generally superior to both standard schemes. Although both extended and 

F-F performed similarly for the 3d case, F-F was always slightly faster. However, in the 

2d test problem, extended has the best performance, and it appears to be getting better as 

the problem size increases. The bottom line is; for these types of problems, if PMIS 

coarsening is used, F-F or extended interpolations should be used as well. 
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